Glass-like dynamics in confined and congested ant traffic.

نویسندگان

  • Nick Gravish
  • Gregory Gold
  • Andrew Zangwill
  • Michael A D Goodisman
  • Daniel I Goldman
چکیده

The collective movement of animal groups often occurs in confined spaces. As animal groups are challenged to move at high density, their mobility dynamics may resemble the flow of densely packed non-living soft materials such as colloids, grains, or polymers. However, unlike inert soft-materials, self-propelled collective living systems often display social interactions whose influence on collective mobility are only now being explored. In this paper, we study the mobility of bi-directional traffic flow in a social insect (the fire ant Solenopsis invicta) as we vary the diameter of confining foraging tunnels. In all tunnel diameters, we observe the emergence of spatially heterogeneous regions of fast and slow traffic that are induced through two phenomena: physical obstruction, arising from the inability of individual ants to interpenetrate, and time-delay resulting from social interaction in which ants stop to briefly antennate. Density correlation functions reveal that the relaxation dynamics of high density traffic fluctuations scale linearly with fluctuation size and are sensitive to tunnel diameter. We separate the roles of physical obstruction and social interactions in traffic flow using cellular automata based simulation. Social interaction between ants is modeled as a dwell time (Tint) over which interacting ants remain stationary in the tunnel. Investigation over a range of densities and Tint reveals that the slowing dynamics of collective motion in social living systems are consistent with dynamics near a fragile glass transition in inert soft-matter systems. In particular, flow is relatively insensitive to density until a critical density is reached. As social interaction affinity is increased (increasing Tint) traffic dynamics change and resemble a strong glass transition. Thus, social interactions play an important role in the mobility of collective living systems at high density. Our experiments and model demonstrate that the concepts of soft-matter physics aid understanding of the mobility of collective living systems, and motivate further inquiry into the dynamics of densely confined social living systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Signal Control in Urban Road Networks with High Priority Congested Centers

Keeping the density of traffic flow and air pollution in an acceptable level and developing a good capacity for transit in the high priority areas of the city, is really a big deal in large and crowded cities. To address this problem, a new method of intersection signal optimization is presented in this paper. Based on network fundamental diagrams, an Internal–External Traffic Metering Strategy...

متن کامل

Modelling widely scattered states in ムsynchronizedメ traffic flow and possible relevance for stock market dynamics

Traffic flow at low densities (free traffic) is characterized by a quasi-one-dimensional relation between traffic flow and vehicle density, while no such fundamental diagram exists for ‘synchronized’ congested traffic flow. Instead, a two-dimensional area of widely scattered flow-density data is observed as a consequence of a complex traffic dynamics. For an explanation of this phenomenon and t...

متن کامل

Ant colony optimisation for vehicle traffic systems: applications and challenges

Ant-based algorithms simulate the cooperative behaviour of real ants in finding food resources. A significant number of studies have focused on the self-organised behaviour of ants in the natural environment to develop effective systems for dynamic problems. Ant-based systems have special properties such as scalability, adaptability, and dynamicity, which are the main requirements for solving v...

متن کامل

An Inverted Ant Colony Optimization approach to traffic

With an ever increasing number of vehicles traveling the roads, traffic problems such as congestions and increased travel times became a hot topic in the research community, and several approaches have been proposed to improve the performance of the traffic networks. This paper introduces the Inverted Ant Colony Optimization (IACO) algorithm, a variation of the classic Ant Colony algorithm that...

متن کامل

Analyzing Stop Time Phase Leading to Congestion Based on Drivers’ Behavior Patterns

Traffic oscillation, stop and go traffic, is created by different reasons such as: sudden speed drop of leader vehicle. Stop and go traffic commonly is observed in congested freeways results in traffic oscillation. Many theories had been presented to define congestion traffic based on laws of physics such as: thermodynamics and fluid. But, these theories could not explain the complexity of driv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Soft matter

دوره 11 33  شماره 

صفحات  -

تاریخ انتشار 2015